Deep Variational Information Bottleneck

Note

Information bottleneck이론이란 데이터 X로부터 관련 정보인 Y로 정보를 압축할 때 Y와의 관련성(accuracy)과 X의 압축성(compression)사이의 최고의 tradeoff를 정보량을 통하여 찾는 기법을 말한다. R_{IB}(\theta) = I(Z, Y; \theta) - \beta I(Z, X; \theta)

Continue reading

Variational Inference of Disentangled Latent Concepts from Unlabeled Observations

WHY?

Disentanling과정은 기본적으로 x내에서 독립적인 요소를 찾아 각각 다른 z로 나누는 작업이다. 이를 위하여 z의 prior를 independent Gaussian(N(1,0))로 간주하여 근사하거나(Beta-VAE) Batch내의 z의 값을 permutation하여 adversarial training하는 방법으로 독립을 유도하였다(FVAE). 하지만 Beta-VAE는 모든 관측치의 분포를 N(1,0)으로 강제하여 관측치의 차이에 덜 민감하게 만들어 reconstruction의 성능이 떨어진다.

Continue reading

Pagination


© 2017. by isme2n

Powered by aiden