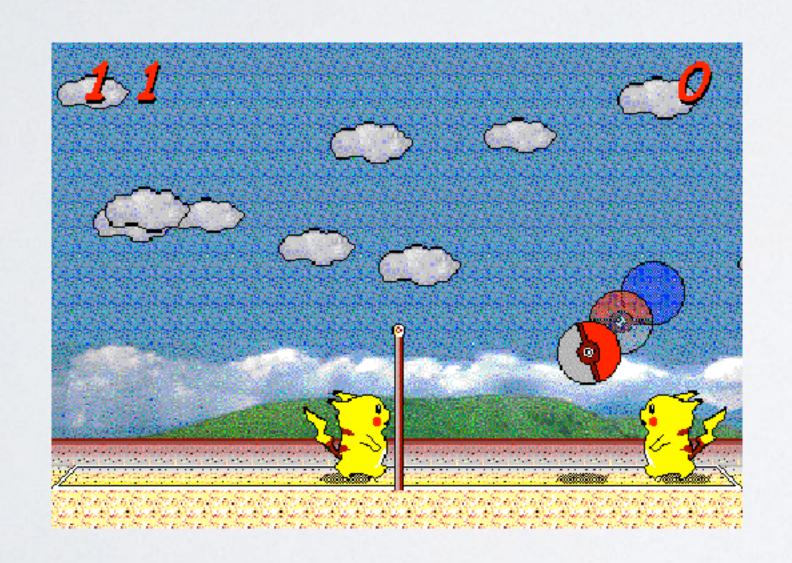
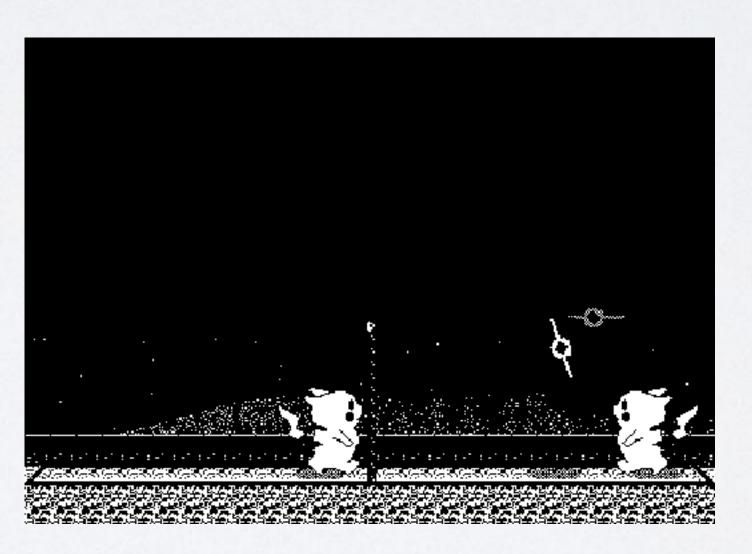
DISENTANGLING FROM SEQUENTIAL DATA

SNU Datamining Laboratory 2018. 6. 18 Seminar Sungwon, Lyu lyusungwon@dm.snu.ac.kr

REPRESENTATION LEARNING

- Representation Learning
 - Learning representation of the data that make it easier to extract useful information when building classifiers or other predictors





(110, 5, 225, 5, 210, 10)

WHAT MAKES A REPRESENTATION GOOD?

- Smoothness: $x \approx y$ then $f(x) \approx f(y)$
- Multiple Explanatory factors: Generalize many configurations of factors
- · A hierarchical organization of explanatory factors
- Semi-supervised learning
- Shared factors across tasks
- Manifolds: Low meaningful dimensions
- · Natural clustering: Named, categorized
- Temporal and Spatial coherence
- Sparsity: insensitive to small variations of x

DISENTANGLING

· DC-IGN

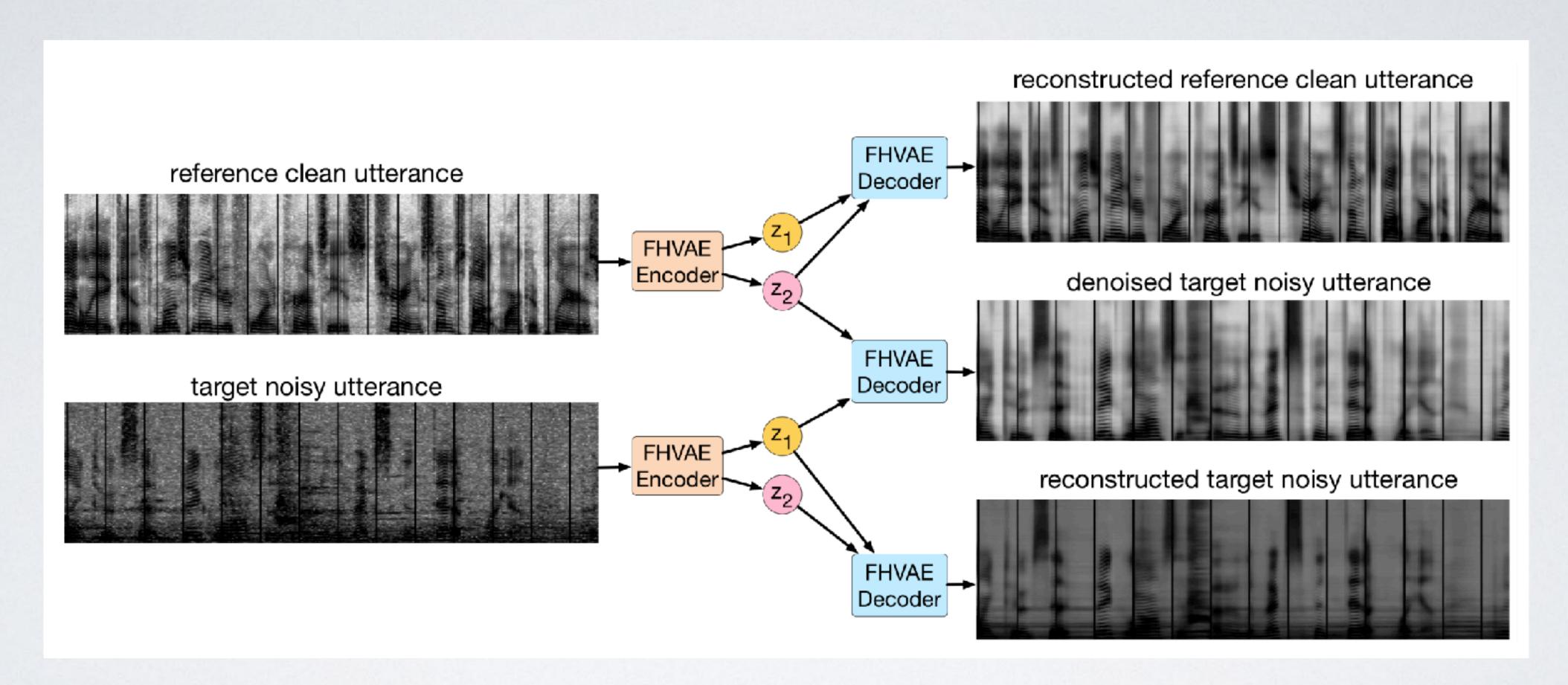
• Clamping a part of the hidden units for a pair of data points that are known to match in all but one factors of variation

InfoGAN

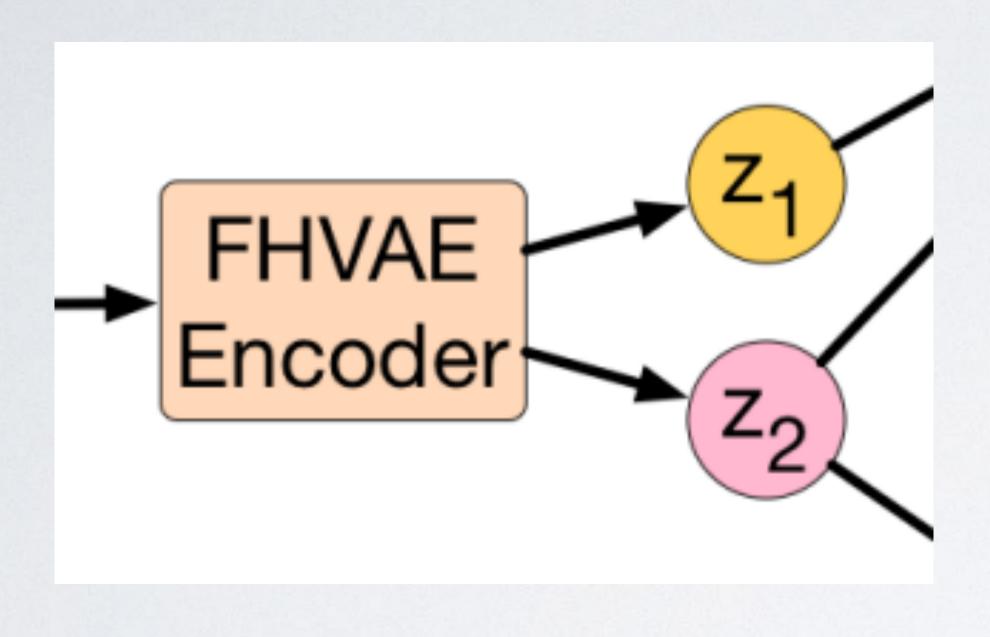
- Maximize the mutual information between a latent code c and x through the use of an auxiliary distribution Q(c|x)
- Beta-Vae
 - Encourages the latent representation to be factorised by adding beta to VAE objective

Source: Kulkarni, Tejas D., et al. "Deep convolutional inverse graphics network." Advances in Neural Information Processing Systems. 2015., Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets." Advances in Neural Information Processing Systems. 2016., Kulkarni, Tejas D., et al. "Deep convolutional inverse graphics network." Advances in Neural Information Processing Systems. 2015.

MOTIVATION



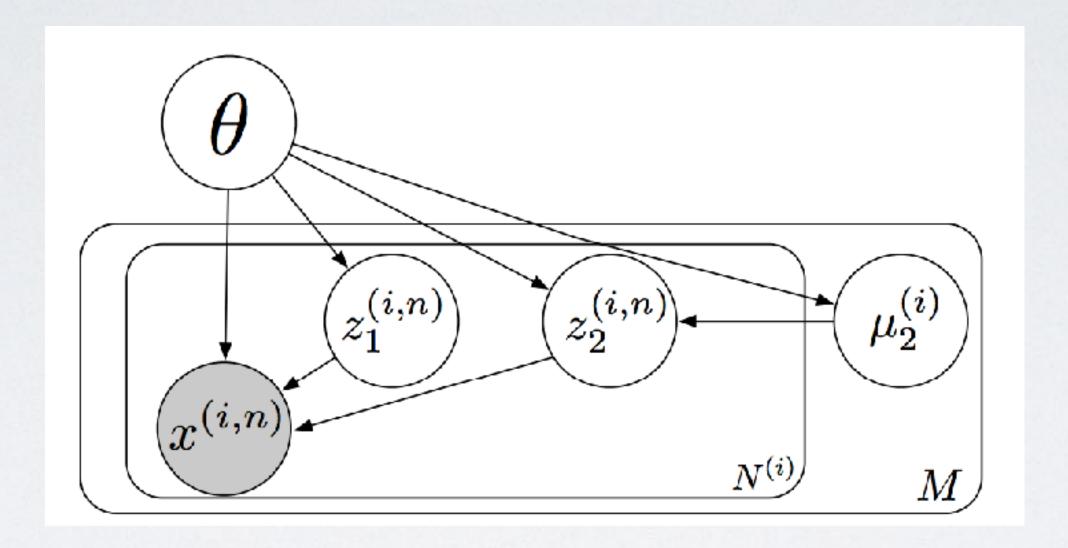
https://www.youtube.com/watch?v=naJZITvCfl4&feature=youtu.be https://www.youtube.com/watch?v=VMX3IZYWYdg&feature=youtu.be



- Factorized Hierarchical VAE
- Sequence-level attributes
 - Speaker identity, Character style
 - Latent sequence variable (Z_1)
- Segment-level attributes
 - Phonetic content, Action
 - Latent segment variable (Z_2)
- Notation

$$\mathcal{D} = \{\mathbf{X}^{(i)}\}_{i=1}^{M}, \mathbf{X}^{(i)} = \{\mathbf{x}^{(i,n)}\}_{n=1}^{N^{(i)}}$$
$$\mathbf{Z}_{1} = \{\mathbf{z}_{1}^{(\mathbf{n})}\}, \mathbf{Z}_{2} = \{\mathbf{z}_{2}^{(\mathbf{n})}\}$$

Generative model



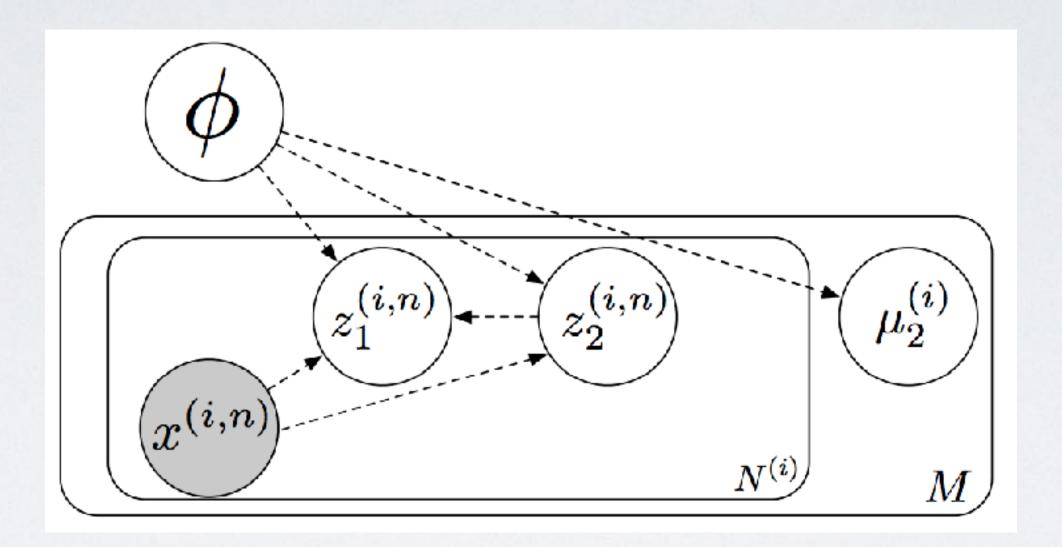
Equation

$$p_{\theta}(\boldsymbol{X}, \boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \boldsymbol{\mu}_{2}) = p_{\theta}(\boldsymbol{\mu}_{2}) \prod_{n=1}^{N} p_{\theta}(\boldsymbol{x}^{(n)} | \boldsymbol{z}_{1}^{(n)}, \boldsymbol{z}_{2}^{(n)}) p_{\theta}(\boldsymbol{z}_{1}^{(n)}) p_{\theta}(\boldsymbol{z}_{2}^{(n)} | \boldsymbol{\mu}_{2})$$

$$p_{\theta}(\boldsymbol{x} | \boldsymbol{z}_{1}, \boldsymbol{z}_{2}) = \mathcal{N}(\boldsymbol{x} | f_{\mu_{x}}(\boldsymbol{z}_{1}, \boldsymbol{z}_{2}), diag(f_{\sigma_{x}^{2}}(\boldsymbol{z}_{1}, \boldsymbol{z}_{2})))$$

$$p_{\theta}(\boldsymbol{z}_{1}) = \mathcal{N}(\boldsymbol{z}_{1} | \boldsymbol{0}, \sigma_{\boldsymbol{z}_{1}}^{2} \boldsymbol{I}), \quad p_{\theta}(\boldsymbol{z}_{2} | \boldsymbol{\mu}_{2}) = \mathcal{N}(\boldsymbol{z}_{2} | \boldsymbol{\mu}_{2}, \sigma_{\boldsymbol{z}_{2}}^{2} \boldsymbol{I}), \quad p_{\theta}(\boldsymbol{\mu}_{2}) = \mathcal{N}(\boldsymbol{\mu}_{2} | \boldsymbol{0}, \sigma_{\boldsymbol{\mu}_{2}}^{2} \boldsymbol{I})$$

Inference model



Equation

$$\begin{split} q_{\phi}(\boldsymbol{Z}_{1}^{(i)}, \boldsymbol{Z}_{2}^{(i)}, \boldsymbol{\mu}_{2}^{(i)} | \boldsymbol{X}^{(i)}) &= q_{\phi}(\boldsymbol{\mu}_{2}^{(i)}) \prod_{n=1}^{N^{(i)}} q_{\phi}(\boldsymbol{z}_{1}^{(i,n)} | \boldsymbol{x}^{(i,n)}, \boldsymbol{z}_{2}^{(i,n)}) q_{\phi}(\boldsymbol{z}_{2}^{(i,n)} | \boldsymbol{x}^{(i,n)}) \\ q_{\phi}(\boldsymbol{\mu}_{2}^{(i)}) &= \mathcal{N}(\boldsymbol{\mu}_{2}^{(i)} | g_{\mu_{\boldsymbol{\mu}_{2}}}(i), \sigma_{\tilde{\boldsymbol{\mu}}_{2}}^{2} \boldsymbol{I}), \quad q_{\phi}(\boldsymbol{z}_{2} | \boldsymbol{x}) = \mathcal{N}(\boldsymbol{z}_{2} | g_{\mu_{\boldsymbol{z}_{2}}}(\boldsymbol{x}), diag(g_{\sigma_{\boldsymbol{z}_{2}}^{2}}(\boldsymbol{x}))) \\ q_{\phi}(\boldsymbol{z}_{1} | \boldsymbol{x}, \boldsymbol{z}_{2}) &= \mathcal{N}(\boldsymbol{z}_{1} | g_{\mu_{\boldsymbol{z}_{1}}}(\boldsymbol{x}, \boldsymbol{z}_{2}), diag(g_{\sigma_{\boldsymbol{z}_{1}}^{2}}(\boldsymbol{x}, \boldsymbol{z}_{2}))), \end{split}$$

Factorising variational lower bound

$$\begin{split} \mathcal{L}(\theta, \phi; \boldsymbol{X}) &= \sum_{n=1}^{N} \mathcal{L}(\theta, \phi; \boldsymbol{x}^{(n)} | \tilde{\boldsymbol{\mu}}_{2}) + \log p_{\theta}(\tilde{\boldsymbol{\mu}}_{2}) + const \\ \mathcal{L}(\theta, \phi; \boldsymbol{x}^{(n)} | \tilde{\boldsymbol{\mu}}_{2}) &= \mathbb{E}_{q_{\phi}(\boldsymbol{z}_{1}^{(n)}, \boldsymbol{z}_{2}^{(n)} | \boldsymbol{x}^{(n)})} \big[\log p_{\theta}(\boldsymbol{x}^{(n)} | \boldsymbol{z}_{1}^{(n)}, \boldsymbol{z}_{2}^{(n)}) \big] \\ &- \mathbb{E}_{q_{\phi}(\boldsymbol{z}_{2}^{(n)} | \boldsymbol{x}^{(n)})} \big[D_{KL}(q_{\phi}(\boldsymbol{z}_{1}^{(n)} | \boldsymbol{x}^{(n)}, \boldsymbol{z}_{2}^{(n)}) | | p_{\theta}(\boldsymbol{z}_{1}^{(n)})) \big] \\ &- D_{KL}(q_{\phi}(\boldsymbol{z}_{2}^{(n)} | \boldsymbol{x}^{(n)}) | | p_{\theta}(\boldsymbol{z}_{2}^{(n)} | \tilde{\boldsymbol{\mu}}_{2})). \end{split}$$

Segment Variational lower bound

$$\mathcal{L}(\theta, \phi; \boldsymbol{x}^{(n)}) = \mathcal{L}(\theta, \phi; \boldsymbol{x}^{(n)} | \tilde{\boldsymbol{\mu}}_2) + \frac{1}{N} \log p_{\theta}(\tilde{\boldsymbol{\mu}}_2) + const.$$

• Discriminative objective

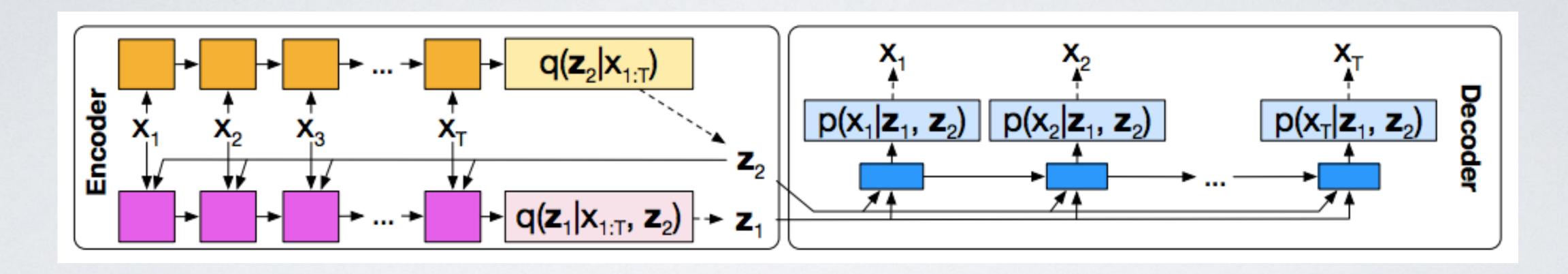
$$egin{aligned} \log p(i|m{z}_2^{(i,n)}) &= \log p(m{z}_2^{(i,n)}|i) - \log \sum_{j=1}^M p(m{z}_2^{(i,n)}|j) \quad (p(i) ext{ is assumed uniform}) \ &:= \log p_{ heta}(m{z}_2^{(i,n)}| ilde{m{\mu}}_2^{(i)}) - \log ig(\sum_{j=1}^M p_{ heta}(m{z}_2^{(i,n)}| ilde{m{\mu}}_2^{(j)})ig), \end{aligned}$$

Objetive function

$$\mathcal{L}^{dis}(heta, \phi; oldsymbol{x}^{(i,n)}) = \mathcal{L}(heta, \phi; oldsymbol{x}^{(i,n)}) + lpha \log p(i|oldsymbol{z}_2^{(i,n)})$$

IMPLEMENTATION

Sequence to sequence autoencoder model



```
\begin{split} &(\boldsymbol{h}_{\boldsymbol{z}_{2},t},\boldsymbol{c}_{\boldsymbol{z}_{2},t}) = \operatorname{LSTM}(\boldsymbol{x}_{t-1},\boldsymbol{h}_{\boldsymbol{z}_{2},t-1};\boldsymbol{c}_{\boldsymbol{z}_{2},t-1};\phi_{\operatorname{LSTM},\boldsymbol{z}_{2}}) \\ &q_{\phi}(\boldsymbol{z}_{2}|\boldsymbol{x}_{1:T}) = \mathcal{N}(\boldsymbol{z}_{2}|\operatorname{MLP}(\boldsymbol{h}_{\boldsymbol{z}_{2},T};\phi_{\operatorname{MLP}_{\mu},\boldsymbol{z}_{2}}),\operatorname{diag}(\exp(\operatorname{MLP}(\boldsymbol{h}_{\boldsymbol{z}_{2},T};\phi_{\operatorname{MLP}_{\sigma^{2}},\boldsymbol{z}_{2}})))) \\ &(\boldsymbol{h}_{\boldsymbol{z}_{1},t},\boldsymbol{c}_{\boldsymbol{z}_{1},t}) = \operatorname{LSTM}([\boldsymbol{x}_{t-1};\boldsymbol{z}_{2}],\boldsymbol{h}_{\boldsymbol{z}_{1},t-1},\boldsymbol{c}_{\boldsymbol{z}_{1},t-1};\phi_{\boldsymbol{z}_{1}}) \\ &q_{\phi}(\boldsymbol{z}_{1}|\boldsymbol{x}_{1:T},\boldsymbol{z}_{2}) = \mathcal{N}(\boldsymbol{z}_{1}|\operatorname{MLP}(\boldsymbol{h}_{\boldsymbol{z}_{1},T};\phi_{\operatorname{MLP}_{\mu},\boldsymbol{z}_{1}}),\operatorname{diag}(\exp(\operatorname{MLP}(\boldsymbol{h}_{\boldsymbol{z}_{1},T};\phi_{\operatorname{MLP}_{\sigma^{2}},\boldsymbol{z}_{1}})))) \\ &(\boldsymbol{h}_{\boldsymbol{x},t},\boldsymbol{c}_{\boldsymbol{x},t}) = \operatorname{LSTM}([\boldsymbol{z}_{1};\boldsymbol{z}_{2}],\boldsymbol{h}_{\boldsymbol{x},t-1},\boldsymbol{c}_{\boldsymbol{x},t-1};\phi_{\boldsymbol{x}}) \\ &p_{\theta}(\boldsymbol{x}_{t}|\boldsymbol{z}_{1},\boldsymbol{z}_{2}) = \mathcal{N}(\boldsymbol{x}_{t}|\operatorname{MLP}(\boldsymbol{h}_{\boldsymbol{x},t};\phi_{\operatorname{MLP}_{\mu},\boldsymbol{x}}),\operatorname{diag}(\exp(\operatorname{MLP}(\boldsymbol{h}_{\boldsymbol{x},t};\phi_{\operatorname{MLP}_{\sigma^{2}},\boldsymbol{x}})))), \end{split}
```

EXPERIMENT

Speaker Verification

Table 1: Comparison of speaker verification equal error rate (EER) on the TIMIT test set

Features	Dimension	α	Raw	LDA (12 dim)	LDA (24 dim)
	48	-	10.12%	6.25%	5.95%
i-vector	100	-	9.52%	6.10%	5.50%
	200	-	9.82%	6.54%	6.10%
$oldsymbol{\mu}_2$	16	0	5.06%	4.02%	_
	16	10^{-1}	4.91%	4.61%	-
	16	10^{0}	3.87%	3.86%	-
	16	10^{1}	2.38%	2.08%	-
	32	10^{1}	2.38%	2.08%	1.34%
$oldsymbol{\mu}_1$	16	10 ⁰	22.77%	15.62%	-
	16	10^{1}	27.68%	22.17%	-
	32	10^{1}	22.47%	16.82%	17.26%

Automatic Speech Recognition

Table 2: TIMIT test phone error rate of acoustic models trained on different features and sets

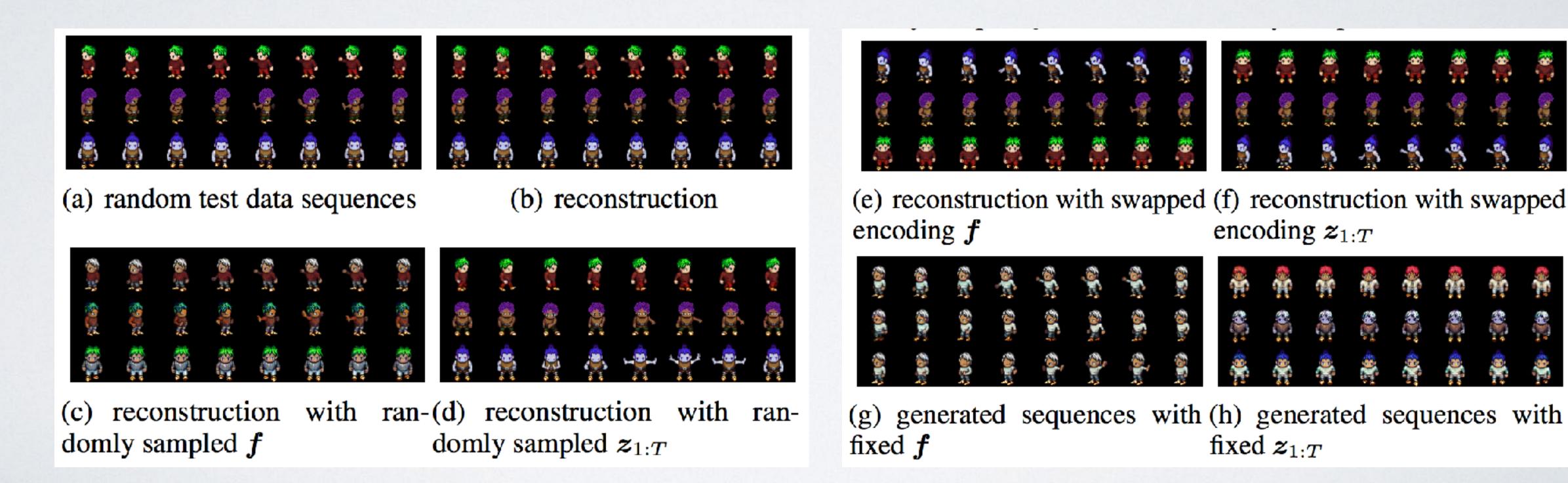
Train Set and Configuration			Test PER by Set			
ASR	FHVAE	Features	Male	Female	All	
Train All	-	FBank	20.1%	16.7%	19.1%	
Train Male	- Train All, $\alpha=10$	FBank z_1	21.0% 22.0%	32.8% 26.2 %	25.2% 23.5 %	

Table 3: Aurora-4 test word error rate of acoustic models trained on different features and sets

Train Set and Configuration			Test WER by Set					
ASR	$\{FH-,\beta-\}VAE$	Features	Clean	Noisy	Channel	NC	All	
Train All	-	FBank	3.60%	7.06%	8.24%	18.49%	11.80%	
Train Clean	-	FBank	3.47%	50.97%	36.99%	71.80%	55.51%	
	Dev, $\beta = 1$	z (β-VAE)	4.95%	23.54%	31.12%	46.21%	32.47%	
	Dev, $\beta=2$	z (β -VAE)	3.57%	27.24%	30.56%	48.17%	34.75%	
	Dev, $\beta = 4$	z (β -VAE)	3.89%	24.40%	29.80%	47.87%	33.38%	
	Dev, $\beta = 8$	z (β-VAE)	5.32%	34.84%	36.13%	58.02%	42.76%	
	Dev, $\alpha = 10$	z_1 (FHVAE)	5.01%	16.42%	20.29%	36.33%	24.41%	
	Dev, $\alpha = 10$	\boldsymbol{z}_2 (FHVAE)	41.08%	68.73%	61.89%	86.36%	72.53%	
	Dev\NC, $\alpha = 10$	z_1 (FHVAE)	5.25%	16.52%	19.30%	40.59%	26.23%	

RELATED WORKS

- A Deep Generative Model for Disentangled Representations of Sequential Data
 - · Applied almost the same architecture to video



RELATED WORKS

- Multimodal Unsupervised Image-to-Image Translation
 - · Used Adversarial training to disentangle style and content feature

